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If a thermal gradient is applied along a fluid-solid interface, the fluid experiences a thermo-osmotic
force. In the steady state, this force is balanced by the gradient of the shear stress. Surprisingly, there
appears to be no unique microscopic expression that can be used for computing the magnitude of the
thermo-osmotic force. Here we report how, by treating the mass M of the fluid particles as a tensor in the
Hamiltonian, we can eliminate the balancing shear force in a nonequilibrium simulation and therefore
compute the thermo-osmotic force at simple solid-fluid interfaces. We compare the nonequilibrium force
measurement with estimates of the thermo-osmotic force based on computing gradients of the stress tensor.
We find that the thermo-osmotic force as measured in our simulations cannot be derived from the most
common microscopic definitions of the stress tensor.
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Nanotechnology is not just conventional technology
scaled down to the nanoscale. The reason is that processes
that are relatively unimportant on macroscopic scales may
become dominant on the nanoscale. Case in point are
phoretic flows: the movement of fluids under the influence
of gradients of thermodynamic quantities such as the
temperature or chemical potential. On a macroscopic scale,
the application of a pressure gradient or a body force is the
most efficient way to move fluid through a tube. The
resulting flux is proportional to the fourth power of the tube
diameter. However, on a submicron scale, phoretic flows
tend to become important, because the resulting volumetric
flow rates scale as the square of the tube diameter. Hence,
for many problems, be they technological (e.g., nano-
fluidics) or natural (e.g., fluid flow through porous net-
works or gels), it is becoming increasingly important to be
able to predict phoretic flows.
A key feature of phoretic flows is that they are driven by

forces that act only on those parts of the fluid that interact
with the confining surfaces. The range of the fluid-wall
interactions is typically in the nanometer regime, except in
the case of electrolytes in contact with charged surfaces, in
which case the interaction layers may have thicknesses
ranging from nanometers to microns. Here we will be
considering thermo-osmotic forces in nonpolar fluids near a
wall. For such systems, the thermo-osmotic force driving
the flow is typically confined to an interfacial layer with a
thickness of a few molecular diameters. Thermo-osmotic
flows have been known for well over a century [1,2], but
the relevance of this phenomenon is increasing as more
experiments probe transport on the nanoscale. Moreover,
there is increasing evidence that large temperature gradients
may exist inside eukaryotic cells [3], which is also an
environment full of interfaces.

Derjaguin [4] formulated a generic description of
thermo-osmosis in the language of irreversible thermo-
dynamics. As the approach by Derjaguin (and others) is
phrased in the language of macroscopic thermodynamics
and continuum hydrodynamics (creeping-flow equations),
it cannot be used for a quantitative prediction of the
magnitude of thermo-osmotic flows from the knowledge
of the intermolecular interactions. Moreover, the validity of
continuum hydrodynamics is questionable in the first few
molecular layers near a wall.
Yet, a microscopic implementation of Derjaguin’s

approach is possible by using the Onsager reciprocity
relations to relate the flow due to a temperature gradient to
the more easily calculated, excess heat flux due to a pressure
gradient. In fact, in earlier work [5] we found reasonable
agreement between the Onsager approach and nonequili-
brium simulations. Fu, Merabia, and Joly [6] also used the
Onsager approach to estimate the thermo-osmosis coefficient
near a water-graphene interface. However, neither our meth-
ods nor those developed in Ref. [6] allow us to compute
directly the forces on a fluid due to thermal gradients parallel
to a surface.
As noted by Anderson [7], the stress tensor σαβ near

an interface is anisotropic. Force balance normal to the
interface means that σzz is constant, whereas the transverse
stress σxx will depend on z. A temperature gradient in the x
direction induces a local stress gradient parallel to the
interface. The stress σxx depends on x only through its
(explicit or implicit) dependence on the temperature [5]:

∂σxxðzÞ
∂x ¼

�∂σxxðzÞ
∂T

�
Pbulk

∂T
∂x : ð1Þ

The temperature derivative is computed at constant bulk
pressure, because thermal gradients do not cause pressure
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gradients in the bulk of the liquid. Therefore, the depend-
ence of σxx on T will vanish in the bulk. As the temperature
is the only quantity that is varied, the local stress gradient
must originate from intermolecular forces.
Here we use molecular simulations to predict the

strength of the local stress gradient. The most straightfor-
ward approach is to carry out nonequilibrium molecular
dynamics simulations to probe thermally induced forces.
However, explicitly imposing a thermal gradient cannot
work, because in the steady state the net force on all fluid
particles must necessarily vanish: The flow induced by the
local stress gradient causes a gradient in the shear stress [7]
that cancels the thermo-osmotic force [Eq. (1)] (see
Supplemental Material, nonequilibrium method [8]):

∂σxzðzÞ
∂z ¼ −

∂σxxðzÞ
∂x : ð2Þ

Because the viscous shear force is directly proportional to
the fluid velocity, eliminating the flow should cause it to
vanish so that only the local stress gradient remains. As we
will later show, the simplest way to accomplish this is to treat
the mass M of the fluid particles as a tensor in the
Hamiltonian and consider the limit where Myy¼Mzz¼M,
the original mass of the particles, while Mxx → ∞. As the
kinetic energy remains finite, vx → 0 for all fluid atoms,
thereby eliminating the shear force.
To gain insight on the microscopic origins of the thermo-

osmotic force, it is necessary to isolate the forces due to the
thermal gradients from those due to gradients in the shear
stress. The normal route to obtain the force fVx ðzÞ on a
volume element in a liquid is to compute the gradient of
stress acting on that element. Here z denotes the distance
from the interface, and x the direction of the force parallel
to the wall. The superscript V indicates that fVx ðzÞ is the
force per unit volume. We can convert fVx ðzÞ into fPx ðzÞ, the
force per particle, by using ρðzÞfPx ðzÞ ¼ fVx ðzÞ, where ρðzÞ
is the number density at a distance z from the wall.
Equation (1) provides a convenient route to compute

stress gradients numerically, because the temperature
dependence of the stress tensor can be computed from
equilibrium simulations at slightly different temperatures
by numerical differentiation:

∂σxxðzÞ
∂T ≈

σeq;T2
xx ðzÞ − σeq;T1

xx ðzÞ
T2 − T1

: ð3Þ

In what follows, we denote the approach based on Eqs. (1)
and (3) as the “stress-gradient” route (see Supplemental
Material, stress-gradient method [8]). The stress-gradient
method would seem to offer a route to compute phoretic
forces in thin layers from the microscopic definition of the
stress tensor. However, as we show below, this approach
fails. We recall that the definition of the microscopic stress
tensor is not unique. This ambiguity is not a problem when

computing the bulk pressure or even the surface tension
[11]. However, for stress gradients parallel to a surface,
different definitions of the microscopic stress do not yield
the same answer. The obvious question is then: Which
stress tensor provides the correct description? The surpris-
ing answer that we find is “none” (at least not one of the
usual suspects).
As an alternative to computing the microscopic stress

gradient, we can relate the gradient of the position-
dependent stress to the local value of the excess enthalpy
[5] [see Supplemental Material, local thermal equilibrium
(LTE) method [8] for a derivation]:

∂σxxðzÞ
∂x ¼ −

�
ΔhðzÞ
T

� ∂T
∂x ; ð4Þ

where ΔhðzÞ is the excess enthalpy density. Note that
Eq. (4) can be evaluated in a single equilibrium simulation.
Because of the nonuniqueness of the definition of the

stress tensor, different definitions may yield different stress
gradients. The most commonly used microscopic stress
definitions are the virial (V) (see, e.g., [12]) and the Irving-
Kirkwood (IK) [13]. Both definitions have identical kinetic
(K) contributions [σKxxðzÞ ¼ −ρðzÞkBT]. The nonunique-
ness of the stress arises from different definitions of the
potential (ϕ) stress (see Supplemental Material, stress-
gradient method [8]).
Therefore, Eqs. (3) and (4) provide at least three distinct

expressions for the thermo-osmotic force. We can evaluate
Eq. (1) via the substitution of both stress expressions in
Eq. (3) or compute Eq. (4) via our local thermodynamic
expression for ΔhðzÞ [Eq. (S23)]. Then, the thermo-
osmotic force per particle is given by

fPx ðzÞ ¼
1

ρaveðzÞ
�∂σxxðzÞ

∂x
�
; ð5Þ

where ρaveðzÞ ¼ ½ρðT1; P; zÞ þ ρðT2; P; zÞ�=2.
As the three methods for evaluating the thermo-osmotic

force give different answers (see Fig. 2), we would like to
know which, if any of these, is correct. The obvious
approach is to compute the thermo-osmotic force in a
steady-state, nonequilibrium simulation. To eliminate the
shear stress [Eq. (2)] in a nonequilibrium simulation, so that
only the thermo-osmotic force remains, we propose the
following nonequilibrium simulation technique: First, we
impose a periodic temperature gradient along x. This is
done by selecting the leftmost part of the simulation box
(see Fig. S2 in Supplemental Material) and thermostatting
at a temperature lower than the average (T ¼ 0.9) while
also selecting the middle of the simulation box and
thermostatting at a temperature higher than the average
(see Supplemental Material, nonequilibrium method [8]).
The resulting heat current sets up the thermal gradient.
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After the system has reached the steady state, we change
the equations of motion for the fluid atoms: In particular, we
now treat the massM of the fluid particles as a tensor in the
Hamiltonian and consider the limit where Mxx → ∞.
Transforming the Hamiltonian in this way changes the
dynamics of the system, but static properties such as
intermolecular interactions remain the same. Equipartition
would still hold in this model system; hence, the average
kinetic energy associatedwithmotion in thex direction is still
kBT=2. As

vx ¼
ffiffiffiffiffiffiffiffi
kBT
Mxx

s
; ð6Þ

vx → 0 for all fluid atoms. SinceMyy andMzz are still equal
to M, the original mass of the particles, fluid atoms are still
diffusing in the y and z directions. As the average kinetic
energy does not change, the magnitude of the temperature
gradient is left unchanged (Fig. 1). In other words, we have
switched off the shear flow while maintaining the temper-
ature gradient (see Supplemental Material, nonequilibrium
method [8]).
In this stationary system, the bulk serves as a reservoir of

atoms so that fluid near the surface can rearrange to the
local-equilibrium density profile. As the gradient in shear
stress ∂σxzðzÞ=∂z now vanishes, only the thermo-osmotic
force will remain. To compute the average thermo-osmotic
force, we must average the per-atom force calculation over
many different initial configurations, as every single
realization will have a different density profile in the x
direction frozen in.
In our numerical calculations, we consider a Lennard-

Jones fluid consisting of N ¼ 7920 atoms interacting via a
truncated and shifted Lennard-Jones potential

V truncðrÞ ¼
�
4ϵ½ðσrÞ12 − ðσrÞ6� − VðrcÞ r ≤ rc;

0 r > rc:
ð7Þ

where rc ¼ 4σ. In what follows, σ is our unit of length, and ϵ
is our unit of energy: All computed quantities are expressed
in reduced units.We carried out simulations where this fluid
was in contact with three different surfaces: a structuredwall
interactingwith fluid through a less attractiveLennard-Jones
potential, a structured wall interacting via a purely repulsive
Weeks-Chandler-Andersen (WCA) potential [14], and a
reflecting wall that simply flips the corresponding velocity
of fluid atoms if they attempt to cross it. The parameters for
interaction between the fluid and structured wall are
σfluid-fluid ¼ σsolid-fluid ¼ σ. The interaction strength between
the fluid and structured wall is given by ϵsolid-fluid ¼ 0.55ϵ.
The WCA interaction between the fluid and repulsive wall
atomswas obtained by truncating and shifting the fluid-fluid
interaction at rc ¼ 21=6σ.
All molecular dynamics simulations were carried out

using the LAMMPS package [15]. Figure 1 shows a
simulation cell of length hLxi ¼ 49.32σ and hLyi ¼
9.86σ containing fluid that interacts with a structured wall.
Figure S1(b) shows the simulation cell for fluid interacting
with a reflecting wall. To ensure that P ¼ 0.122 in the bulk,
the top wall acts as a piston that is free to move in the x and
z directions. The solid atoms in the structured walls were
arranged in an fcc lattice (ρ ¼ 0.9σ−3) bonded via harmonic
springs to their nearest neighbors, where the spring stiffness
kbond ¼ 5000ϵ=σ2 and equilibrium rest length is 1.1626σ.
The fluid was in contact with the f001g face of the crystal
lattice.
To minimize computational costs, we used a smaller

simulation box (hLxi=3 ¼ 16.44σ, N ¼ 2640 fluid atoms)
to evaluate the microscopic stress (see Supplemental
Material, stress-gradient method [8]) and LTE (see
Supplemental Material, LTE method [8]) expressions.
When comparing the directly computed thermo-osmotic
force in the nonequilibrium simulation with the “stress-
gradient” and LTE methods, we should note that the direct
calculation only includes the gradient in the potential stress

fP;ϕx ðzÞ ¼ 1

ρðzÞ
�∂σϕxxðzÞ

∂T
∂T
∂x

�
; ð8Þ

since the force computation is simply a summation over all
pairwise forces. Yet, as mentioned previously, the non-
uniqueness of the stress arises due to different definitions of
the potential stress, not the kinetic. Therefore, we can use
our equilibrium measurements of the kinetic stress at
different temperatures (see Supplemental Material, stress-
gradient method [8]) to calculate the gradient of the kinetic
stress. Adding the kinetic contribution to our direct
calculation should give the full thermo-osmotic force.
Figures 2(a) and 2(b) compare the force per particle

predicted by the stress-gradient and LTE methods with

FIG. 1. Simulation box used for nonequilibrium force calcu-
lation. Fluid atoms (blue, white, and red) interact with solid atoms
(maroon) bonded together via harmonic springs. Temperature
profiles are plotted over the simulation box, and the color gradient
indicates a gradual progression from cold to hot atoms.
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those computed directly via the nonequilibrium technique.
For the structured wall shown in Fig. 2(b) (see Fig. S3 for
the Lennard-Jones surface), the nonequilibrium calculation
was carried out for temperature gradients of different
magnitudes in order to validate the signal. As expected,
the thermo-osmotic force monotonically increases as a
function of the gradient. To improve statistics, the non-
equilibrium forces from the left and right regions were
averaged (see Fig. S2).
Surprisingly, in all cases, both the V (red) and IK (cyan)

approximations of the stress gradient fail to predict the
thermo-osmotic force (blue). Perhaps more significantly,
the LTE approach (green) gets quite close but still differs
from the nonequilibrium result (blue). It is possible that
this difference is due to deviation of the nonequilibrium
result from the local thermal equilibrium approximation.
Encouragingly, all methods agree in predicting zero net
force in the bulk, consistent with the theory [Eq. (4)].
From a mesoscopic perspective, the integral of fPx ðzÞ

shown in Fig. 2 multiplied by the corresponding density
profiles ρðzÞ [see Fig. S4(d)] yields the surface tension
gradient ∂γ=∂x. Surprisingly, for all surfaces apart from the
Lennard-Jones structured surface (see Fig. S3), the
mechanical and LTE approaches predict the same surface
tension gradient (see Table S1). The discrepancy leads us to
conclude that stress expressions fail even at a mesoscopic
scale at solid-fluid interfaces (see Supplemental Material,
surface tension gradients [8]).
In our previous work, there was significant numerical

evidence indicating that stress gradients also fail to predict
microscopic Marangoni and osmotic forces due to con-
centration gradients [16,17]. We have shown that, near an
interface, it is not possible to express the microscopic
forces as the gradient of the stress tensor.

In the calculations presented in Fig. 2(b), we assume that
the structure of the confining solid does not depend on the
temperature. Symmetry then implies that, on average, a flat
solid wall should exert zero net transverse force on a fluid
atom. Yet, in the case of an atomically structured wall, the
stress gradient predicts a nonzero force contribution from
the surface [see Fig. S5(c)].
To elucidate the role of the wall stress, we repeated the

force calculation via the mass tensor but instead summed
over only wall-fluid interactions ϕwf. Surprisingly, Fig. 3(b)
shows a significant force exerted by thewall on the fluid from
z ¼ 0.8–1.4 that scales linearly with the gradient. As a test

(a) (b)

FIG. 2. Comparison of nonequilibrium force measurement (blue) with stress-gradient approaches using V (red) and IK (cyan) stress
expressions as well as the LTE approach (green). Force profiles are plotted near (a) a flat, reflective wall and (b) a WCAwall. As the wall
position is at z ¼ 0, below (a) z ¼ 0.025 and (b) z ¼ 0.825, the local fluid density is less than 10%of the bulk density giving poor statistics.

Solid

Fluid

(b)(a)

FIG. 3. (a) The average center-of-mass hxc:m:i position of fluid
atoms (red spheres) in the right region (see Fig. S2) as a function
of the height z from the surface (located at z ¼ 0). (b) shows the
nonequilibrium calculation of the wall force (summation of wall-
fluid interactions).
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case, the same force was measured in equilibrium simula-
tions (blue circles) whileMxx → ∞, where, as expected, the
wall exerts no force.
To explain the wall forces shown in Fig. 3(b), we

consider the possibility that, due to the density gradient
in x induced by the thermal gradient, the average center-of-
mass x position [Fig. 3(a)] of a fluid atom (red spheres) is
asymmetric with respect to the lattice positions of the solid
atoms (yellow spheres) below. Figure 3(a) shows the
average x position of an atom as a function of z in the
equilibrium (blue circles) and nonequilibrium simulations
(green, red, and cyan circles).
In equilibrium, the center-of-mass position of a fluid

atom in the right region (x ¼ 25.48–48.50 in Fig. S2) is
located at the region center, x ¼ 36.99, also the lattice
position of a solid atom. Out of equilibrium, the average
position shifts away from the center in a way that scales
linearly with the gradient and breaks symmetry. The force
profile in Fig. 3(b) is consistent with the position shift
shown in Fig. 3(a), since the fluid experiences a negative
force where it is shifted right z ¼ 0.8–1.0, zero force at
z ¼ 1.075where there is no shift, and a small positive force
where it is shifted left z ¼ 1.1–1.4. As expected, the wall
force decays extremely quickly. Surprisingly, the potential
stress gradient [Fig. S5(c)] predicts wall forces that are
opposite in sign to the actual values and decay slowly. It is
likely in the case of a purely repulsive surface [Fig. 2(b)]
that fluid will on average be sufficiently far away such that
the wall force will become exceedingly small. For the flat
interface [Fig. 2(a)], there are no transverse wall-fluid
interactions, meaning that the thermo-osmotic force is
solely due to fluid-fluid interactions.
In the context of the existing literature, it is worth noting

that Maxwell’s [18] derivation of gas thermal creep flow
along a solid interface approximated the surface as a
reservoir behaving intermediate between a reflected and
an evaporated gas. Defining the parameter f as the fraction
of gas molecules absorbed and evaporated by the surface
and 1 − f as the fraction reflected, he derived a coefficient
of slipping that incorporates surface asperities. While we
solely consider the case of a reflecting surface (f ¼ 0,
i.e., perfect slip) in Fig. 2(a), we can easily introduce partial
slip by using bounceback rules. Moreover, we can explic-
itly model a structured, solid surface instead of using
Maxwell’s approximation.
In this Letter, we have reported direct calculations of

the thermo-osmotic force using a nonequilibrium simula-
tion technique. We find that, near a solid-fluid interface,
fx ≠ ∂σxx=∂x, suggesting that neither the Irving-Kirkwood
nor virial expressions accurately predict surface forces due
to temperature gradients. Although the stress is useful for a
hydrodynamic description of the problem [7], it does not
match with what is measured microscopically. Third, we
find that an expression for the thermo-osmotic force based

on the local enthalpy gets close to the true result. Finally,
we have determined the contribution from wall stresses. For
a structured surface, the wall structure does play a role in
thermo-osmosis due to the asymmetric positioning of fluid
atoms with respect to the lattice positions of solid atoms.
This contribution disappears in the case of an unstructured
reflecting wall.
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