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Effective prophylactic vaccines usually induce the immune system to generate potent antibodies
that can bind to an antigen and thus prevent it from infecting host cells. B cells produce anti-
bodies by a Darwinian evolutionary process called affinity maturation (AM). During AM, the B
cell population evolves in response to the antigen to produce antibodies that bind specifically and
strongly to the antigen. Highly mutable pathogens pose a major challenge to the development
of effective vaccines because antibodies that are effective against one strain of the virus may not
protect against a mutant strain. Antibodies that can protect against diverse strains of a mutable
pathogen have high “breadth” and are called broadly neutralizing antibodies (bnAbs). In spite of
extensive studies, an effective vaccination strategy that can generate bnAbs in humans does not
exist for any highly mutable pathogen. Here we study a minimal model to explore the mechanisms
underlying how the selection forces imposed by antigens can be optimally chosen to guide AM to
maximize the evolution of bnAbs. For logistical reasons, only a finite number of antigens can be
administered in a finite number of vaccinations; that is, guiding the non-equilibrium dynamics of
AM to produce bnAbs must be accomplished non-adiabatically. The time-varying Kullback-Leibler
divergence (KLD) between the existing B cell population distribution and the fitness landscape im-
posed by antigens is a quantitative metric of the thermodynamic force acting on B cells. If this force
is too small, adaptation is minimal. If the force is too large, contrary to expectations, adaptation
is not faster; rather, the B cell population is extinguished for reasons that we describe. We define
the conditions necessary for the force to be set optimally such that the flux of B cells from low to
high breadth states is maximized. Even in this case we show why the dynamics of AM prevent
perfect adaptation. If two shots of vaccination are allowed, the optimal protocol is characterized
by a relatively low optimal KLD during the first shot that appropriately increases the diversity of
the B cell population so that the surviving B cells have a high chance of evolving into bnAbs upon
subsequently increasing the KLD during the second shot. Phylogenetic tree analysis further reveals
the evolutionary pathways that lead to bnAbs. The connections between the mechanisms revealed
by our analyses and recent simulation studies of bnAb evolution, the problem of generalist versus

specialist evolution, and learning theory are discussed.

I. INTRODUCTION

Vaccines are a major contributor to the dramatic de-
cline in childhood mortality over the past century, and
have mitigated the threat of infectious diseases around
the world. Indeed, vaccination has saved more lives than
any other medical procedure. The importance of vaccines
for the economy and for human health has been made
vivid during the COVID-19 pandemic. Vaccines elicit
pathogen-specific immune responses that can be rapidly
recalled upon natural infection with the same pathogen,
thus preventing disease. Most such prophylactic vaccines
induce our immune systems to produce antibodies that
can thwart infection by specific pathogens.

B lymphocytes (B cells), an important part of the im-
mune systems of vertebrates, express a receptor on their
surface that is called the B cell receptor (BCR). Humans
have about 100 billion B cells each and most possess a
BCR that is distinct from that of a different B cell. Anti-
bodies are produced by a Darwinian evolutionary process
called affinity maturation (AM) [1]. Upon stimulation by

a pathogen or surrogate of a pathogen (antigen) that is
used as a vaccine component, BCR on B cells can bind to
proteins on the surface of the pathogen or antigen. B cells
that bind with a free energy above a threshold can seed
structures called Germinal Centers (GCs) where they un-
dergo AM [2]. The BCR of these cells mutate at a high
rate [3]. The mutated B cells compete with each other
to bind to the pathogenic surface protein, and those with
BCRs that can bind more strongly have a better chance
to be positively selected. B cells that are not positively
selected die. A few positively selected B cells exit the
GC, and some of them secrete their BCR in soluble form.
The secreted product is an antibody. Other positively se-
lected B cells become so called memory B cells that can
subsequently be stimulated rapidly upon exposure to the
same pathogen. Most positively selected B cells undergo
further rounds of mutation and selection. Therefore, as
time ensues, the antibodies that are produced bind more
strongly to the pathogenic surface protein [4].

To see how antibodies can prevent pathogens from in-
fecting new cells, consider viruses. Viruses have spikes
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on their surface comprised of proteins. To infect a cell,
a virus’ spike binds to a protein on the surface of the
host cell. Antibodies can bind to the spike proteins of
a virus and thus interfere with a virus’ ability to bind
to a host cell protein, an action which prevents infection
[5]. As a consequence, eliciting potent antibodies that
bind specifically to any surface protein on the pathogen
can be effective. Highly mutable pathogens can, how-
ever, present a major challenge to vaccination using this
strategy. This is because mutations can emerge in their
surface proteins, and the antibodies generated by vacci-
nation, which bind to a particular protein, are no longer
effective [6].

The surface proteins of even highly mutable pathogens,
like HIV and influenza, have some regions that cannot
mutate because these regions are important for binding
to host cell proteins to enable infection [7-9]. For exam-
ple, a part of the surface spike protein of HIV is relatively
conserved. Antibodies that can bind to these conserved
regions would be effective against diverse strains of the
pathogens [10]. However, generating such antibodies by
vaccination is a non-trivial challenge [11]. The relatively
conserved region on the HIV spike is smaller in size than
the typical size of an antibody’s antigen binding region,
and the conserved part is surrounded by highly variable
residues of the spike protein [12]. So, the challenge is to
design HIV vaccination protocols that can guide the evo-
lutionary process of AM to produce antibodies that bind
only to the conserved bits of the spike and avoid the
highly variable parts [13]. Antibodies that can achieve
such specificity for the conserved parts of surface pro-
teins, and can thus effectively neutralize diverse mutant
virus strains, are called broadly neutralizing antibodies
(bnAbs).

Antibodies that can bind to particular strains of a vi-
ral surface protein are specialists, while bnAbs may be
viewed as generalists [14, 15]. AM is a stochastic non-
equilibrium mutation and selection process. The chal-
lenge of influencing this process in a way that results in
the evolution of generalists, rather than specialists, is a
problem that lies at the intersection of non-equilibrium
statistical physics, evolutionary biology, and immunol-
ogy. Fundamental insights into this problem will be of
significant pragmatic relevance to society.

Recently, simulation studies with the aim of shedding
light on these issues have been carried out [2, 16-20].
A number of insights emerged from such studies. It
is evident that in order to generate bnAbs, one would
have to stimulate AM with multiple variant antigens
that share conserved residues, but have different variable
parts. Wang et al. [2] showed that sequential stimulation
of AM with variant antigens, is likely a more effective way
to generate bnAbs than a cocktail of the same antigens.
Subsequently, experiments in mice have shown that an-
tibodies resembling HIV bnAbs emerge upon sequential
immunization with variant antigens [21, 22]. Upon vac-
cinating with one variant antigen, AM produces memory
B cells that can be stimulated and undergo further evolu-

tion upon vaccinating with a second variant antigen, and
so on. Each time a new variant antigen is introduced,
the environment in which the existing memory B cells
evolved changes, and the memory B cell population is
driven from one steady-state to another [23]. So, sequen-
tial immunization results in the evolution of B cells by
AM in a time-varying environment.

The non-equilibrium response of heterogeneous pop-
ulations to time varying environments has been ex-
plored by numerous authors [24-26]. Clonal popula-
tions stochastically switch phenotypes in response to
changes in the environment. Recently, stochastic phe-
notype switching was directed towards searching for op-
timal conditions that increase the fraction of generalists
within a background population of both specialists and
generalists [14, 15]. Two recent studies have provided
further insights into how vaccination protocols could op-
timize the evolution of bnAbs, or generalists. Sprenger
et al [17] have carried out simulations of the AM process
upon sequential immunization and reported that there is
an optimal distance between the variable region of the
immunogens used in sequence, and/or immunogen con-
centration, in order to maximize the chance of produc-
ing bnAbs. Furthermore, they found that the optimum
distance or concentration is sequentially higher as each
new variant antigen is used to stimulate AM. The optima
were thought to correspond to optimal extents to which
the existing B cell population is driven out of equilib-
rium from a previous steady state. Recently, Sachdeva
et al. [15] studied the effect of cycling between antigenic
environments. Their simulations showed that if a pop-
ulation of specialist B cells is subjected to time-varying
environments cycled at an optimal resonance frequency,
specialists will evolve to become generalists while the re-
verse process is prevented. Interestingly, it was observed
that gradually increasing the frequency from slow to fast
resulted in an optimal point for generating a large frac-
tion of generalists. This result is related to the shift of
the optimum to higher values at each subsequent step of
sequential immunization that Sprenger et al. reported
[17].

The goal of vaccination is to maximize the production
of bnAbs. One of the practical constraints is that we are
allowed only a small finite number of immunizations due
to logistical considerations. From a theoretical stand-
point, this implies that the selection forces cannot be
applied in an adiabatic fashion to guide the evolutionary
dynamics to the desired end point. The non-adiabatic
character of the imposed selection forces with the pos-
sibility of B cell death (absorbing boundary condition)
represents an interesting problem in non-equilibrium sta-
tistical mechanics.

Previous studies of this problem have considered the
effects of changing immunization protocols by altering
the mutational distance and concentrations of antigens
[2, 16, 17, 27] or varying the frequency of environmental
cycling [15]. Here, we have formulated the problem so
that the effects of changing these variables can be clearly
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related to concepts in non-equilibrium statistical mechan-
ics and learning theory. We provide a quantitative mea-
sure of the effective thermodynamic selection force im-
posed on the B cell population upon immunization, and
explore how varying this force influences when and how
the B cell population adapts to the selection force. We
use this conceptual framework to provide insights into
the evolutionary forces that define optimal vaccination
protocols. The key features of evolutionary trajectories
that lead to the evolution of generalist bnAbs are also
described.

II. RESULTS

A. Minimal model for the evolution of broadly
neutralizing antibodies

As we described in our introductory remarks, upon
natural infection or vaccination, antibodies that bind
more strongly to the stimulating antigen evolve by a Dar-
winian evolutionary process. Our focus here is the evolu-
tion of bnAbs, which bind to regions of the virus’ surface
proteins that are relatively conserved across strains.

The virus’ intact surface protein complex (e.g., the
spike), or a part of it, has to be the immunogen, or the
active component of the vaccine. This is because the B
cells that evolve during AM must learn to focus their
binding footprint on the relatively conserved residues in
the context of the actual geometry of the surface protein.
But, the protein has many regions that do not contain
any conserved residues. Human B cells have a huge di-
versity of BCRs, and so vaccinating with the surface pro-
tein would most likely result in activating B cells that do
not bind to the region containing conserved residues [11].
This is because there are many more regions without con-
served residues. AM would then proceed, and generate
antibodies that bind well to the variable residues of a par-
ticular strain of the surface protein that was employed in
the vaccine. To address this challenge, immunogens have
been developed that can activate the so called germline
B cells that bind to parts of the protein containing the
conserved region [10]. These immunogens are not the
surface protein complex, but something much simpler.
Now, upon vaccination with mimics of the full surface
protein complex, can bnAbs evolve? If so, what is the
optimal strategy? These are the questions we consider
here in terms of non-equilibrium thermodynamic forces
and fluxes. Our findings can help guide practical choices
regarding vaccination protocols in terms of concrete con-
cepts in statistical physics and learning theory.

To obtain essential physical insights into this problem,
we construct a minimal model. The affinity between
a BCR and an antigen to which it binds is, in princi-
ple, defined by many variables, such as the character of
the amino acid residues of the BCR’s antigen binding
region and those of the viral epitope as well as the three-
dimensional conformations of the interacting parts. Var-

ious coarse-grained models have been used to represent
such interactions. Omne class of such models described
by Wang et al. [2], Luo et al. [27], and Sprenger et al.
[17] represented the antigen binding region of the BCR
and the epitope using strings of sites, and used simplified
models to calculate binding free energies between them.
The probability of a B cell being positively selected de-
pended on this interaction free energy. Another simpli-
fied representation, called shape space, has proven useful
for reducing the dimensionality down to a few (5 or 6)
abstract variables [28-30]. Recently [16], a 2D model of
shape space was used to simulate GC reactions, where
one of the dimensions corresponded to conserved amino
acids and the other to variable amino acids on the anti-
gens. The BCR regions that interact with the conserved
and variable amino acids of the antigen were represented
similarly on the two axes. The affinity depended on the
FEuclidean distance between the BCRs and antigens on
a hypersphere centered around the origin. Similarly, the
breadth of evolving BCRs will be defined by many vari-
ables. Inspired by the shape-space model, and in the
spirit of Occam’s razor, we consider the breadth of cov-
erage of a BCR to be defined by a single dimension. This
dimension may be considered to be an appropriate pro-
jection of a higher-dimensional manifold, and we will re-
fer to it as the “breadth space”.

The origin (0.0 on the abscissa of (Fig. 1(a)) denotes
the state of highest possible breadth. If a B cell with a
particular BCR sequence is at the origin, it binds with
the highest possible affinity to conserved epitopes on the
antigens and avoids binding to the surrounding variable
regions as best as possible. B cells traverse the breadth
dimension by mutations and the breadth decreases upon
moving left or right from the origin. We discretize
breadth space into a set of K —1 bins where K is the total
number of states and the additional state corresponds to
death (Fig. 1(b)). Mutations that result in changes of
affinity between BCR and antigens, and thus changes of
the breadth state in our model, occur because of discrete
modifications to codons that code for BCR amino acids.
Also, changes in breadth state are the product of multiple
mutations [31, 32]. Thus, we believe that a discrete rep-
resentation of breadth space is appropriate. Mutation-
induced change in affinity between proteins (i.e., BCR
and antigens) are log-normally distributed [17]. We ac-
count for this by setting the mutational transition prob-
abilities such that breadth-enhancing mutations are less
likely to occur than breadth-reducing mutations. Some
mutations can result in a BCR that does not fold into the
proper shape or confer some other grossly deleterious fea-
ture. So, any BCR sequence, with some probability, can
acquire a lethal mutation [33]. Also, GC B cells are in-
trinsically apoptotic; i.e., if not positively selected, they
die [34, 35].

The immunogen that leads to the activation and mat-
uration of B cells that can bind to the conserved residues
on the surface protein produces a pool of memory B cells
that have the potential to evolve into bnAbs. However,
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FIG. 1: Definition of breadth space. (a) Depiction of the 1D fitness landscape. The origin denotes the point of
highest breadth and the fitness distribution imposed on the B cell population by the immunogen is Gaussian.
Reducing the variance of the fitness focuses selection pressure on B cells that bind with high affinity to conserved
epitopes. (b) Breadth space is binned into K — 1 states: K/2 is the highest breadth state corresponding to the
origin in (a), 1 and K — 1 are states of lowest breadth, and 0 is the death state.

these B cells are not bnAbs. The immunogens that mimic
the entire virus’ surface protein and are administered
subsequently are meant to evolve this B cell population to
produce bnAbs. These immunogens, the variant antigens
that share conserved residues, impose selection forces on
this population of B cells.

Different B cells correspond to different states of
“breadth”. The selection force imposed on a particular
B cell depends upon its breadth. During affinity matura-
tion, B cells compete with each other to be positively se-
lected by T helper cells that are present in limiting num-
bers. The probability of a B cell in a particular breadth
state (or bin) being positively selected per unit time can
be regarded as the “fitness” of B cells in that bin. So, we
will refer to this probability as fitness hereon.

Since the goal is to maximize the number of B cells
occupying the highest breadth state, the selection proba-
bility or fitness landscape is taken to be a Gaussian cen-
tered at the bin corresponding to bnAbs, as shown in Fig.

1(a). The choice of immunogen and immunization proto-
col determines the variance of the imposed fitness land-
scape. For example, if a cocktail of variant antigens that
share conserved residues but are very different in their
variable regions, is administered, only the B cells that
have evolved high breadth will be strongly selected. The
corresponding fitness landscape will be sharply peaked
(orange and green curves in Fig. 1(a)). If a single im-
munogen is first administered, then a greater diversity of
B cells can be positively selected, and the fitness land-
scape is characterized by a higher variance (blue curve in
Fig. 1(a)). For sequential immunization, as noted above,
the fitness landscape changes in discrete time steps. This
change corresponds to a time-varying antigenic environ-
ment in which a heterogeneous B cell population evolves
through replication, mutation, and selection.

The birth-death master equations describing time evo-
lution of the probability distribution of the B cell popu-
lation vector subjected to mutation and selection is given
by [25]:
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where i denotes the index of the breadth bin, n and m
are the number of B cells in bins ¢, and j, respectively;
i; is the mutation rate per cell from bin ¢ to j, f; is the
fitness or probability per unit time that a B cell in bin 4
replicates. The combined effects of lethal mutation and
basal death rate of GC B cells corresponds to a rate of
B cell death, denoted by ;9. The state space describing
the master equations is shown in Fig. 1(b). B cells that
occupy bin K/2 have attained maximum possible breadth
whereas those in states 1 and K —1 have lowest breadth.
State 0 represents an absorbing boundary condition as it
corresponds to B cell death.

Directly solving the master equations is numerically
cumbersome. Instead, taking the expectation value of
Eq (1) and following the procedure described in the SI
of [25], we derive the following mean-field equations:

W) (- S i) + s (6) (@)

i#] J#i

where N; is the number of cells occupying bin i and IV; is
the number in bin j. Eq (2) clarifies the processes which
regulate the population dynamics in each breadth state.
Cells in a particular bin replicate with a probability per
unit time that depends on the fitness of cells in the bin
and the number of cells that occupy that bin. They leave
bin, 4, with a propensity equivalent to the product of the
transition rate from ¢ to all other states j and the popu-
lation of cells in bin, ¢; entrance into bin, 4, is determined
by rates j to i and occupancy of states j. Of course, if
i = 0, the first term on the right-hand side of Eq (2)
vanishes.

The master equations (Eq (1)) can be solved by
transforming the mean field equations (Eq (2)) into
a set of “chemical reactions” and using the Gillespie
method [36, 37] (see Supplementary Materials) to gen-
erate stochastic trajectories of the B cell birth-death-
mutation process; each trajectory contains the set of all
reactions that occur within a single GC. There are two
important stop conditions that end a GC trajectory: the
B cell population dies (3, Ni(t) = 0) or the total num-
ber of B cells in the GC approaches a sufficiently large
size. The former condition represents extinction, and the
latter is a proxy for the B cells having consumed all anti-
gens present in the GC, thus ending AM.

The objective of our stochastic simulations is to un-

j#i om

(

derstand how a discretized time-evolving fitness profile
or changing antigenic environment affects the production
of bnAbs, and thus determine the mechanistic underpin-
nings of how certain vaccination protocols may optimize
bnAb production. In experimental studies [38], antigen
concentration and mutational distance between the vari-
able regions of sequentially administered immunogens
are the principal parameters that can be controlled by
the vaccine administrator. Changing these parameters
changes the selection probability and therefore the char-
acteristics of the fitness landscapes. In this case, a large
decrease in the antigen concentration or large increase in
the mutational distance corresponds to a large decrease
in the variance of the fitness landscape.

In response to an immunogen, the existing memory
B cell population evolves with respect to the imposed
fitness landscape (Fig. 2(b), orange). The amount of
information that the B cell population needs to gain in
order to adapt perfectly to the antigenic environment is
quantified by the Kullback-Leibler divergence (KLD) or
the relative entropy of the B cell population distribution
after injection j (p’) and the fitness imposed (probability
of selection per unit time) during injection j + 1 (f+!)
[39]:

K-1
D7) = pllog(pl /£ (3)
i=1

Eq (3) quantifies the thermodynamic force acting on
the existing B cell population upon immunization: the
KLD between the probability distribution describing the
breadth states of the B cell population and the distribu-
tion describing the probability with which states of dif-
ferent breadth are positively selected per unit time (i.e.,
fitness). In the context of statistical learning theory, Eq
(3) defines a cost function that must be minimized by
an evolving B cell population. Note also that the KLD
as defined in Eq (3) is zero when the steady state corre-
sponding to extinction (p — 0) is approached. The quan-
tity D(f||p) would approach infinity in the same limit,
which is undesirable. A symmetrized form of the KLD
e.g. the Jensen-Shannon divergence would have a similar
undesired behavior. To study the effects of varying the
immunization protocol, we will vary the KLD.

The parameters, p;; and ji;0, must be fixed so that the
resulting dynamics are consistent with the expected be-
havior of GCs and B cell sequence evolution [17]. Given
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FIG. 2: Fitness landscape and response of the B cell population. (a) Imposed fitness landscape (f;) during prime
(blue) and boost (orange). (b) Response of B cell population distribution p; to fitness landscapes shown in (a).

that breadth space is discretized into K — 1 bins and the
fitness landscape is normalized, p;o < 1/(K — 1) so that
the population does not become extinct when a uniform
fitness profile is imposed. The fitness landscape, not the
basal death rate, should primarily determine the prob-
ability of GC survival. It is known from clinical data
on HIV that the initially activated B cells need to ac-
quire many mutations in order to become bnAbs [31, 32].
Thus, even when bnAbs evolve naturally, it usually takes
a long time. In our coarse-grained minimal model, this
observation translates to a low mutation rate between
bins. This is because each mutation in our model cor-
responds to many mutations at the residue level. Also,
breadth-enhancing mutations are far less likely to occur
than those that reduce breadth [40]. In biological terms,
this is because B cells are more likely to mutate away
from the small number of sequences that have high affin-
ity for the conserved residues than to mutate towards
them. In other words, the sequence entropy of high-
breadth B cells is lower than that of low-breadth cells; as
a consequence, an entropic force pushes B cells to mutate
outward from low (high breadth) to high (low breadth)
sequence entropy states.

An initial population of 50 cells is sampled from the
occupancy distribution (black, Fig. 2(b)). These are
the B cells that were activated by the simple immunogen
that selects for cells that bind to the region of the virus’
protein that includes the conserved residues [38, 41]. As
noted earlier, the selected B cells are not bnAbs, which is
why the initial occupancy distribution of B cells is chosen
as shown in Fig. 2(b). A fitness landscape is then im-
posed on this B cell population (blue, Fig. 2(a)), which
corresponds to a particular KLD (Eq. (3)). As a con-
sequence, B cell occupancy for all GCs that did not go
extinct shifts from low to higher breadth bins (blue, Fig.
2(b)). We run 100 GC simulations, and obtain stochastic
trajectories of the reactions derived from Eq (2) until ei-
ther stop condition is met: Nyyiq; = 0 or 200. From each
surviving GC, 50 new memory B cells are sampled from

the 200 that exit after prime. Corresponding to the sec-
ond immunogen, a new fitness profile (KLD) is imposed
and this B cell population then evolves stochastically un-
til either stop condition is met. The procedure can be
repeated for subsequent immunizations, and the total
number of B cells occupying the highest breadth state
(i = K/2) summed over all surviving GCs divided by the
number of GCs can be regarded as a measure of the aver-
age number of bnAbs produced by the immunization pro-
tocol. For the results that are shown, K = 16, ;9 = 0.02,
and p;; = 0.05. The mutation rates p; 41 = 0.125u;;
and i1, = 0.875u,;; if ¢ < K/2. Conditions flip for
7> K/2 and for i = K/Q, Hiit1 = Hiji—1 = OE)/J,U

B. Optimal protocols for the first and second
immunizations

We will focus here on studying vaccination protocols
with two sequentially administered immunogens. Follow-
ing standard terminology from vaccination, we will refer
to the first as “prime”, and to the second as “boost”.
There is a large continuous space of choices for immuno-
gens, or possible fitness landscapes, for prime and boost.
We first asked if there is an optimal combination of the
imposed fitness landscapes, f' and f2, respectively, that
maximizes bnAb production. Since the fitness landscape
corresponding to the boost immunogen acts on the B cell
distribution that evolved in response to the fitness pro-
file corresponding to the priming immunogen, it is clear
that optimal f? will depend on the choice of f!. Us-
ing the previously described parameter values, we first
searched over the space of variances in f! profiles that
are imposed on the B cell population (p°) that developed
after activation of the right germline B cells. We then
searched over the space of variances of f2 profiles that
can be imposed on p', the distribution that evolves after
prime immunization. Our results (Fig. 3(a)) show that
an optimal setting of f! exists (yellow line), occurring
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near a KL divergence D(p°||f!) = 2.76.

For each choice of f!, the number of bnAbs produced
per GC after boost is plotted as a function of D(p!||f?),
the divergence between the boost fitness 2 and the B cell
distribution that results after prime p! (Fig. 3(a)). In all
cases, there is also an optimal setting of D(p'||f?), which
exceeds D(p°||f'). From the standpoint of vaccination,
the last result implies that boost immunization needs to
more aggressively focus selection on high breadth B cells
than prime in order to maximize production of bnAbs.
This result is consistent with what has been found with
more elaborate computer simulations that reported an
optimal mutational distance between immunogens and
antigen concentration or oscillatory frequency of environ-
mental changes [15, 17].

At these optimal points, we computed the probabil-
ity of GC survival; i.e., the probability that the B cell
population is not extinguished during AM. Fig. 4(a)
shows that P(GC Survival) = 1.0 for low values of
D(p°||f!) during prime immunization. At the optimal
point (D(p°|| 1) = 2.76), P(GC Survival) drops to ~ 0.9.
Beyond the optimal value of f!, there is a sharp drop in
GC survival probability (Fig. 4(a)) and bnAb titers (Fig.
3(b)). Fig. 4(b) provides an explanation for the abrupt
onset of GC death past the optimal point. For low KL
divergences (D(p°||f') < 2.56), the fitness of all B cell
breadth states exceeds the intrinsic death rate p;o = 0.02
(blue dotted line, Fig. 4(b)). As a result, B cells sam-
pled from the precursor population (black, Fig. 2(b))
that predominantly occupy low breadth states prolifer-
ate quickly, leading to GC survival. As these B cells
rapidly internalize antigen, N quickly reaches a value of
200, and AM ends. Thus, there is limited time for mu-
tations that allow B cells to transition from low to high
breadth states.

For D(p°||f!) > 2.76, we observe that fitness in the
lowest breadth states drops below the death rate. Fur-
thermore, the occupancy of B cells in states adjacent to
the bnAb state is low. So, very few of these B cells mul-
tiply, and most mutations that arise during proliferation
are transitions to lower breadth states. Mutational flux
to low breadth leads to accumulation of B cells in states
at the edge where they die. As a consequence, there is a
sharp increase in the likelihood of extinction events when
the fitness of the lowest breadth states drops below the
death rate. At D(p°||f') = 2.76, the fitness of the low-
est breadth states (yellow, Fig. 4(b)) drops just below
the death rate. But, the B cells in states further from
the edge states have reasonable fitness and can replicate.
Some of these cells mutate toward higher breadth states
and replicate more, while others transition to low breadth
states and die. This leads to an optimal balance of these
fluxes that causes neither rapid extinction nor prolifera-
tion that could end the AM process. Under these condi-
tions, GC reactions continue for some time, enabling the
B cell population to acquire the many mutations required
to become bnAbs.

In order to rule out any effects due to coarse-graining

of breadth space, additional calculations with a larger
number of bins were carried out and the results are shown
in the Supplementary Material. For K = 32 and using
the same assumptions regarding the parameter regime,
we observe the same qualitative behavior (Figs. S1-3).

C. Understanding the optimal conditions in terms
of thermodynamic forces and fluxes, and learning
theory

Previous studies have used the KLD to quantify the
distance between equilibrium distributions of phenotypic
traits [42]. Upon a new immunization (prime or boost),
if the KLD at this time is not too large, the B cell
population evolves in an attempt to adapt to the im-
posed selection force, resulting in reduction of the KLD
with time. Thus, as Fig. 5 shows, after each injection,
the time-dependent B cell population distribution evolves
to reduce the KLD, indicating that B cells learn about
the environment through mutation and selection. How-
ever, perfect adaptation to the imposed selection forces
(D(p||f) = 0) does not occur; when the B cell popula-
tion reaches the maximal threshold and AM ends, the
KLD equals a finite positive value (Fig. 5). Note that
D(p||f) = 0 also corresponds to an equilibrium state.
Taken together, these findings show that, if the thermo-
dynamic force driving adaptation is not too large, the B
cell population reaches a non-equilibrium steady state.
Perfect adaptation is possible if the population continues
to expand. Fig. S4 shows that if the population were
allowed to increase indefinitely, corresponding to contin-
uous antigen stimulation, the system eventually relaxes
to a near equilibrium state (D(p||f) ~ 0). This is the adi-
abatic limit, which is unrealistic for discrete immuniza-
tions. It is noteworthy, however, that experiments and
analyses have shown that slow delivery of immunogens
over a time period improves affinity maturation [43, 44].

Typically, non-equilibrium thermodynamics tells us
that if the thermodynamic force is larger, adaptation
should occur faster. Indeed, this does happen in rare evo-
lutionary trajectories when KLD is very large (Fig. 5(b)).
However, if the initially imposed KLD upon the prime or
boost immunization is too large, the B cell population is
extinguished with high probability. This is because very
few, if any, B cells in the population have a significant
probability of being positively selected shortly after the
new selection force is imposed and there is a net muta-
tional flux to states of lower breadth (and probability of
positive selection). Thus, the dynamical system acquires
a steady state corresponding to the absorbing boundary
condition of B cell death and extinction.

In the context of statistical learning theory, reduction
of the KL divergence (Eq (3)), or the cost function, indi-
cates that learning is happening. Fig. 5 shows that in GC
trajectories where the population survives, D(p(t)||f!)
decreases over time until the maximum population size
(Nmaz = 200) is reached. If a selection force near the
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optimal prime-boost protocol exists.
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FIG. 4: Germinal center (GC) survival (B cell population is not extinguished). (a) Fraction of GCs that survive
prime immunization for a range of values of D(p°||f'). The fraction falls to ~ 0.9 at the optimal setting and drops
significantly beyond this point. (b) Sample fitness landscapes at the points located on the curve shown in (a).

optimal point is exerted on the B cell population (Fig.
5(a)), the KLD decreases more slowly than if a strong
selection force is imposed (Fig. 5(b)). The KLD only
decreases if breadth-enhancing mutations allow B cells
to transition to higher breadth states. Under strong se-
lection forces, if B cells do not mutate fast enough to
higher breadth states, they rapidly die and extinction oc-
curs. The few GC trajectories that survive (shown in Fig.
5(b)) do so because breadth-enhancement and therefore
learning happens quickly.

In a conventional supervised learning problem, the cost
function is initially set by the distance between the data
and model distributions [45]. The learning rate during
gradient descent must be chosen optimally. If it is too
low, training will happen slowly and the model distri-
bution will take a long time to fit to the data distribu-
tion. If it is set too high, undesirable divergent behavior
can emerge and the cost function can increase over time.
As the variance of the fitness distribution changes upon
choosing different immunogens, the learning rate per in-
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jection is set by D(p/||f7*1). If it is too low, the popula-
tion increases rapidly before any substantial decrease in
KLD is observed. If it is too high, most of the GC tra-
jectories die. In the trajectories that lead to extinction
(Fig. S5), we clearly observe divergent behavior as the
KLD may increase rapidly before the population dies.

D. Optimal KL divergence during the prime
generates the right diversity of B cells for
subsequent evolution of bnAbs

After prime immunization, as the B cell population ac-
quires mutations that confer higher breadth, it diversifies
to occupy bins corresponding to higher breadth states.
Thus, D(p||f!) decreases. Fig. 6(a) shows a histogram
of the relative entropy change (AD(p||f!)) of the B cell
distribution within all GCs. AD(p||f!) is calculated by
computing the difference between the KLD just before
GC exit and the initially imposed value, D(p®||f!). At
low D(p°||f1), all GCs survive but produce B cell popula-
tions dominated by low breadth cells (orange, Fig. 6(b)).
As a result, in the majority of GCs, there is a minimal
decrease in the KLD (orange, Fig. 6(a)).

Optimal D(p°||f!) (yellow, Fig. 6(a)) leads to larger
decreases in the KLD within most of the GCs, indicating
greater occupancy of higher breadth states in GCs (yel-
low, Fig. 6(b)) with respect to the precursor B cell pop-
ulation distribution (blue, Fig. 6(b)). A small number
of GCs (~ 10%) die and experience a KLD increase (yel-
low, Fig. 6(a)), indicating that those B cell populations
have lost information about the antigenic environment.
If D(p°||f!) (green, Fig. 6(a)) is too large, high rates of
GC extinction lead to increases of the KLD within most

of the GCs (~ 80%). The small number of GCs that sur-
vive do so because they manage to produce high breadth
B cells by stochastic chance.

In order to understand the optimal choice of f2 given
f', for each B cell that exits as a bnAb after boost,
we computed the breadth state of its ancestral B cell
that initially seeded the GC at the beginning of boost.
Fig. 7 shows the number of bnAb trajectories generated
given that they originated from a starting sequence of
breadth i after the prime. The optimal D(p'||f?) fol-
lowing immunization corresponding to lower than opti-
mal D(p°||f!) must be large in order to generate bnAb
trajectories from high breadth states (orange, Fig. 7)
since occupancy within those states is very low after the
sub-optimal prime (orange, Fig. 6(b)). For D(p°||f!)
higher than the optimum, the optimal D(p!||f?) is small
since the few GCs that survive prime mostly contain high
breadth B cells (green, Fig. 6(b)). The best choice
of D(p'||f?) following the optimal setting of D(p°||f*!)
falls between the optimal values of D(p!||f?) for high
and low values of D(p°||f'); i.e., D(PY|f?)high prime <
D(p1||f2)0ptimal prime < D(pl ‘ |f2)low prime: The Opti'
mal setting for the boost successfully proliferates bnAb
trajectories from several states near the highest breadth
state (e.g. ¢ = 5 — 7 or i = 9 — 11) that are popu-
lated by selection forces imposed by the optimal setting
for the prime. That is, the optimal priming immunogen
generates the right kind of B cell diversity, which makes
possible many high probability evolutionary trajectories
that mature into bnAbs. These trajectories ensue upon
imposing the fitness landscape corresponding to the op-
timal boost.
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FIG. 7: Characterizing optimal protocols. For the three prime protocols shown in Fig. 6, the numbers of
evolutionary trajectories that exit the GCs as bnAbs after optimal boost are graphed as a function of the breadth
state of the B cells that initially seed the trajectories at the beginning of boost.

E. Phylogenetic analyses of evolving B cell
populations

The phylogenetic trees shown in Figs. 8-10 tell a
deeper story about the three possible immunization pro-
tocols analyzed in Figs. 6-7. For each of the 50 B cells
that initially seed the GC, we compute the birth-death-
mutation trajectories that emerge.

At low D(pY||f'), most of the initial crop of B cells
manage to seed trajectories that survive until the end of
prime (Fig. 8(a), yellow region). Yet, since selection is fa-
vorable for low breadth, these trajectories predominantly

generate low breadth B cells; when a high D(p!||f?) is
set during boost (see Fig. 8(a), pink region), nearly all
of the trajectories sampled from these cells die. In rare
cases, one of the precursor trajectories will stochastically
manage to acquire enough breadth-enhancing mutations
to generate high breadth cells before the end of prime.
The top panel in Fig. 8(b) is an expanded view of the
green box shown in Fig. 8(a). One of the trajectories
leads to production of 6 high breadth B cells (green cir-
cles), which get selected at the beginning of boost and
eventually lead to the proliferation of 124 bnAbs (orange
circles, Fig. 8(b), bottom panel, an expanded view of


https://doi.org/10.1101/2020.10.07.330340

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.330340; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the purple box in Fig. 8(a)). These rare events allow the
GC to survive when selection for binding of conserved
epitopes is low during prime and high through boost.

The opposite effect is observed at high D(p°||f!). Un-
der strong selection for high breadth, most trajectories
generated by the precursor B cells die quickly during
prime (see Fig. 9(a), yellow region). Yet, due to rare
stochastic fluctuations, one of the precursor trajectories
may generate a B cell of sufficiently high breadth that un-
der strong selection generates a burst of replication and
branching events (Fig. 9(a)); in the top panel of Fig.
9(b), these bursting events culminate in the production
of 15 high breadth B cells (yellow circles) at the end of
prime. During boost, these cells rapidly replicate and
proliferate 139 bnAbs (orange circles, Fig. 9(b), bottom
panel). Thus, low and high D(p°||f!) protocols can in-
duce bnAb production through rare events; the dynamics
of these events differ depending on the strength of selec-
tion pressure during prime. The results are consistent
with recent experiments [46] showing that homogeneous
GCs are the product of clonal bursts (Fig. 9) though AM
can take place in the presence or absence of such bursts
(Fig. 8).

Phylogenetic trees for the optimal prime-boost proto-
col (Fig. 10(a)) present features which differ dramatically
from the sub-optimal trees. Most noticeably, the tree ex-
hibits considerably greater complexity with the presence
of highly dense replication and mutation events. Due
to the flux balance that prevents extinction and rapid
proliferation of the population, GC lifetime during prime
lasts significantly longer than for sub-optimal immuniza-
tion. Thus, the precursor B cells follow longer trajec-
tories that search breadth space more effectively. As a
consequence, the probability of generating large numbers
of higher breadth B cells is greatly enhanced. The top
panel of Fig. 10(b) shows that, at the end of prime, a
large number of high breadth sequences (n ~ 35, light
purple circles) is produced. It is highly likely that at the
beginning of boost (top panel, Fig. 10(b)), there is at
least one B cell sufficiently close to the bnAb state (yel-
low circle) which eventually seeds the rapid proliferation
of bnAbs by the end of boost (bottom panel, Fig. 10(b)).

An additional notable feature is evidence of a phe-
nomenon akin to clonal interference. For the GC tra-
jectory shown in Fig. 10, the 50 precursor B cells have
the following distribution: N7 = 20, No = 4, N1y = 9,
and N5 = 17. Interestingly, a single breadth 15 B cell
(red box, Fig. 10(a)) manages to generate progeny that
acquire breadth-enhancing mutations sooner than any of
the other initially higher breadth cells. As a result, sig-
nificant clonal expansion of this B cell lineage outcom-
petes trajectories produced by all other precursor cells.
Eventually, all of the B cells that exit prime and seed the
GC during boost originate from this single precursor cell
(blue box, Fig. 10(a)). The exhaustive search process
during optimal prime immunization leads to occupancy
of high breadth states that maximize the likelihood of
proliferating trajectories which eventually find the bnAb

11

state during boost (bottom panel, Fig. 10(b)).

III. CONCLUSIONS

Developing effective vaccines and immunization proto-
cols to induce the production of antibodies that neutral-
ize diverse strains of highly mutable viruses is a major
global health challenge. To date, a vaccination strat-
egy that can generate such bnAbs against viruses like
HIV or influenza have not been developed. Antibodies
are produced by the Darwinian evolutionary process of
AM. The immunogens used in a vaccination strategy im-
pose selection forces on the B cell population. Gener-
ating bnAbs requires controlling selection forces so that
generalists which can neutralize diverse mutant strains of
the virus, rather than specialists that neutralize specific
strains, evolve. In this paper, we combined stochastic
simulations of a minimal model for AM with an infor-
mation theoretic metric to understand the mechanistic
reasons underlying why certain vaccination protocols are
optimal for generating bnAbs.

We studied a case where two immunizations were al-
lowed, a prime and boost. Thus, immunization protocols
must drive the evolution of bnAbs in a non-adiabatic way.
We first defined a quantitative measure of the thermo-
dynamic selection force that acts on the existing B cell
population upon immunization, and which thus drives
the non-equilibrium fluxes that affect the evolution of the
population [15, 17]. The KLD, D(p/||f7*1), measures the
strength of this force. Alternatively, from the standpoint
of statistical learning theory, the KLD can be interpreted
as a cost function that the B cell population attempts to
minimize by replicating and mutating to higher breadth
states. Therefore, the KLD also sets the learning rate per
injection during training. If it is set too low, optimiza-
tion is slow and minimal learning happens before all of
the antigen is consumed. If it is too high, unexpected di-
vergent behavior emerges and the KLD rapidly increases
before extinction.

We find that there is an optimal combination of KLD’s
imposed by prime and boost that maximizes the genera-
tion of bnAbs. Optimal prime occurs when the fitness of
the lowest breadth states falls below the basal death rate,
leading to a balance of fluxes that causes neither extinc-
tion nor rapid proliferation of the population. This pro-
vides the B cells a sufficient amount of time to acquire the
low-probability breadth enhancing mutations necessary
to optimally increase diversity and maintain high survival
probability. For a given KLD that defines the prime, the
optimal KLD for the boost is always higher. These re-
sults are consistent with previous studies of the effects of
changing prime-boost immunization strategies by alter-
ing mutational distances, concentrations and other fea-
tures of the immunogens [2, 16, 17, 27].

Importantly, our study provides several new insights in
terms of the character of the interesting non-equilibrium
process under consideration. If the KLD upon prim-
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ing or boosting is not too large, the B cell population
evolves in time to try to adapt to the imposed selec-
tion force, resulting in reduction of the KLD with time.
However, perfect adaptation to the selection forces can-
not occur because of the finite amount of antigen sup-
plied by the injection. Thus, unless there is extinction of
the B cell population or continuous provision of antigen,
the distribution eventually relaxes to a non-equilibrium
steady-state where, as expected, the thermodynamic se-
lection force, D(p(t)||f), approaches a positive and con-
stant value. Non-equilibrium thermodynamics tells us
that if the force is larger, adaptation should occur faster
because of a larger irreversible flux [47]. Contrary to this
expectation, if the initially imposed KLD upon the prime
or boost immunization is too large, the B cell population
is extinguished with high probability. Thus, no adapta-
tion is possible if the non-equilibrium driving force is too
large.

If the KL divergence is too small during the prime,
most B cell lineages successfully survive, but they do not
gain much information about the bnAb state. These lin-
eages mostly die during the boost, which has to be very
aggressive in order for any bnAbs to evolve. The few
bnAbs that do evolve are the product of rare stochas-
tic trajectories that acquire the right breadth-enhancing
mutations to become nearly bnAbs during the prime.
These are then rapidly expanded during the boost. If
the KL divergence during the prime is too large, most
B cell lineages become extinct because their fitness is
very low. Again, the B cell population does not gain in-
formation about the bnAb state. The few bnAbs that
ultimately evolve are again the product of rare fortunate
trajectories that survive strong selection pressure during
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prime and access the bnAb state during the boost. In
the latter case, the dynamics are ballistic-like as shown
by the phylogenetic trees (Fig. 9(a)). The optimal prim-
ing condition sets the B cell population off-equilibrium
sufficiently so that B cells must evolve to higher breadth
states to proliferate effectively, but the population does
not become extinct with high probability. This balanced
selection force during the prime results in complex evo-
lutionary trajectories that generate B cells in states close
to the bnAb state. During the boost, these lineages can
evolve into bnAbs. In the process, there is evidence of
clonal interference. Therefore, the optimal prime results
in the B cell population acquiring information about the
bnAb state and the right kind of diversity of lineages is
generated.

Recently, it has been shown that phylogenetic trees ex-
hibit different topological asymptotic scaling laws which
depend on whether they are balanced or unbalanced [48].
Upon visual inspection of Figs. 8-10, it is clear that the
trees produced by the optimal protocol exhibit a vastly
different topology from those constructed by sub-optimal
protocols. A scaling analysis could reveal that optimal
and sub-optimal protocols lead to different asymptotic
behaviors with respect to phylogeny, a result that could
reflect a complex interplay between ecological and evolu-
tionary processes during AM [49].

We hope our results will guide more detailed simula-
tions and experiments designed to generate immunogens
that can impose an optimal prime/boost protocol. We
also hope that our work will motivate theoretical studies
on how evolutionary forces can select for generalists in
realistic conditions that are not periodic oscillations in
environments.
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FIG. 8: Phylogeny of evolving B cell lineages for low D(p°||f!) during prime followed by the optimal boost. (a) An

example of a population of B cells evolving in a germinal center. The initial B cells were sampled from the precursor

distribution (black, Fig. 2(b)) subjected to D(p°||f!) = 2.56 and D(p'||f?) = 72.12. The yellow region corresponds
to the prime and the pink region to the boost. (b) The top panel is an expanded view of the green box (green
arrow) in (a), which shows high breadth B cells generated at the end of prime and the beginning of boost. The
bottom panel corresponds to the purple box (purple arrow) in (a), which occurs at the end of boost. Colors of

circles depicting B cells denote their breadth states, and the numbers to the right of each circle quantify the number

of B cells in that state.
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FIG. 9: Phylogeny of evolving B cell lineages for high D(p®||f!) during prime followed by the optimal boost. (a) An
example of a population of B cells evolving in a germinal center. The initial B cells were sampled from the precursor
distribution (black, Fig. 2(b)) subjected to D(p°||f!) = 3.39 and D(p'||f?) = 34.73. The yellow region corresponds
to the prime and the pink region to the boost. (b) The top panel is an expanded view of the green box (green
arrow) in (a), which shows high breadth B cells generated at the end of prime. The bottom panel corresponds to the
purple box (purple arrow) in (a), which corresponds to the end of boost. Colors of circles depicting B cells denote
their breadth states, and the numbers to the right of each circle quantify the number of B cells in that state.
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FIG. 10: Phylogeny of evolving B cell lineages for optimal D(p°||f!) during prime followed by the optimal boost.
(a) An example of a population of B cells evolving in a germinal center. The initial B cells were sampled from the
precursor distribution (black, Fig. 2(b)) subjected to D(p°||f!) = 2.76 and D(p'||f?) = 56.46. The yellow region
corresponds to the prime and the pink region to the boost. (b) The top panel is an expanded view of the green box
(green arrow) in (a), which shows high breadth B cells generated at the end of prime. The bottom panel corresponds
to the purple box (purple arrow) in (a), which corresponds to the end of boost. Colors of circles depicting B cells
denote their breadth states, and the numbers to the right of each circle quantify the number of B cells in that state.
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